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I. INTRODUCTION

Let L be a second order elliptic operator defined in a smooth domain

0 c1 . That is

(.)Lu = - xL a j (x) A-L + Zb (x) -12- + c (x) uax j ax. I ax

where, for every IR E n we have

(1.2a) AO X < ja ijX& AG C i YX S2

for certain positive constants X , A0D with

(1.2b) 0 < X0< A 0

We may assume the coefficients a. (x), bix), c(x) 6 C0*( ) and

(1.2c) c(x) > 0

Let N be a first order operator defined in 0i , i.e.

(1.3) Nu (x au + (x) ~

In this report we are concerned with the eigenvalue problem

(1.4a) Lu = A~u in 0

(1.4b) u : 0 on M~

and the related discrete elgenvalue problem

(1.5a) LhU A ~NhUh in S2(h)

(1.5b) Uh 0 o ~h

h on:' ~ ~ -
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where Lh and Nh are finite-difference operators defined on a grid

region il(h) with boundary 32(h)

In the case where L and N are self-adjoint, i.e.

(1.6) bi(x) =0, (x) = 0, i = 1,2,...,n

and a(x) does not change sign in Q while Lh and Nh correspond

to positive definite matrices one can attack this problem via the appro-

priate variational principles (see Weinberger [12]).

In the general case if Lh and Nh arise from a Galerkin approach

and one has general L2 (.) convergence results one may apply the results

of Vainikko [10] and Osborn [7].

At first glance it would appear that one could somehow easily modify

the finite-difference set-up so as to be able to apply the finite-element

theory. This author was unable to do this.

The difficulty centers about the following points. Let

T = IN, Th = L'INh.

In order to apply the theory of [ 7] we require that

Thf - Tf Vf e X

where X is an appropriate Banach space, say L2(0) . But, the finite-

difference theory is not designed to operate on all of L2(Q), only on

sufficiently smooth functions.

Moreover, if one attempts to extend the theory to all of L2 (0) via

L2 projection or "smoothing", one finds that the eigenvalue problem be-

i 1
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comes perturbed in a manner which is non-trivial when viewed from all of

L2(s) . On the other hand, a glance at the development of [7] shows

that all of the "real action" takes place in certain smooth, finite dimen-

sional subspaces; the eigenspaces. This remark is the key to the develop-

ment given in this report.

This work is motivated by the desire to extend the theory of iterative

methods for the solution of the algebraic problems associated with L - ,

veloped injM to the non-self-adjoint case. -- 'For this reason the

operators N4 will approximate N in a relatively weakP manner.

In order to simplify the presentation we first consider a particular

ImodelO problem. Following that development we discuss the essential fea-

tures of that discussion../

In section 2 we describe [the( basic model problem and some well-known

facts about this model problem.

(in section 3 we develop the convergence theorems.

In section 4 we discuss the ideas in fur convergence proofs and their

possible extension to more general problems.
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2. THlE MODEL PROBLEM

Let

(2.1) {(x,y); 0 <x, y < 1

and let

(2.2) Lu a -(u xx+u ,y) + a(x~y)u x + bxyu

where a, b E C O(Th are nice functions. Let

(2.3) Nu = a(x,y)u + a(xY)u~ + q(x,y)u

with (x, a, q E CM(T . For every f L L2(Q) we lett

Tf - u

be the solution of

(2.4a) Lu =Nf ,in Q

(2.4b) u0- 0 on ail

Since N maps L (Q) into H_ (Q) and the resulting u is in

H1(S2 we see that T is a compact map whose spectrum a(T) consists only

of elgenvalues and 0 . Thus a point z E ,z # 0 ,is in the spectrum

of T only if there is a u E L 2(Q) which satisfies

(2.5) Tu azu ,u 0

We assume that 0 is not an elgenvalue of T
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Let P be a fixed positive integer and set

h -P+1

Let

(2.6a) s(h) - ((xi,yj) (ih,jh); 1 <i,j<P}

be the set of interior mesh points while

(2.6b) MS(h) {(xiY.) = (ih,jh); i or j = 0 or P+l}

is the set of boundary mesh points. A "grid vector" {Uij; 0<ij<P+1}

is a function defined on the total set of mesh points -

(h) = 0(h) u a(h)

As usual, we define the discrete Laplace Operator by: for i < ij < P

U i+l -2Ui J+Ui-lJ Ui -2Ui " +U i(2.7) £AhU]i,j = h2  + ,j.jLl ,. ,.+]
h h

Let

(2.8a) aij U a(xiy i) , bij 2 b(x1 ,Yi)

With this notation we now define the finite-difference operator Lh cor-

responding to L . For I < i,j < P

Ui+]8 Ui-lj + ij+l ij-l(2.8) [LhU]ij 0 "[AhU]ij + aij +h bij 2h

Remark: While U is defined on the entire mesh region, the values AhU

and LhU are defined only on the interior mesh points, Q(h)

ii
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We also define the usual difference operators

(2.9a) [V U]. J- Ij4 1i , < j <P, 0 < i < P

-U.
(2.9b) [vyu) 1~j = Uji41 h '3 ,0 < j P,I< i <P .

Let U,V be grid vectors. We define an inner product

(2.10a) (U,V) =h2 P P

i=1 3=1 31

Observe that this inner product involves only the interior mesh points,

0(h) . In the usual way we define the semi-norm

(2.10b) Hul2 = (Ulu)

We note that this semi-norm is a norm for those grid vectors U which

vanish on the boundary, i.e.,

(2.11) U = 0 on MN(h

We recall the following basic facts.

Lemma 2.1: Let U be a grid vector which satisfies (2.11). Then

(2.12) (-Ah Ulu) = (V xUV xU) + (V yu'vV U)

Proof: Apply summation by parts. See [l], [11).

Definition: Let f(x,y) E C(ff) . Then Q is the grid vector which

interpolates at the mesh points. That is, EQhf] is the restriction of

f to fl(h);

(2.13) [Qh f]ij = i = f(xi,yj)
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2H
Definition: Let f C and let ~j(f;h) be the modulus of continuityH

of the second derivatives of f ,i.e. Let o(x,y) be any second deriva-

tive of f f p or fp= or f For all (x,y) E i and

(x',y') £ E wi th

(x-x'j < h , y-y'f < h

we have

(2.14) sup {I1p(x,y) -p(x','f; (p fx'fX f~ =y W2(f;h)

Of course, w2 (f,h) -~ 0 as h -0.

Definition: Let L* be the formal adjoint of the operator L .That is

(2.15a) L*U = -( -x+Uy (au) x- (bu)

Let Lhbe the finite-difference operator defined by

(2. l5b)[L hU] -j = -[A. h -]i h2

Lemmna 2.2: Let U,V be grid vectors which vanish on 3SI(h), i.e. both U

and V satisfy (2.11). Then

(2.16) (U,LhV) - (L*U,V)

f 2-
IfU 6 C (~)then there is a constant K > 0 such that
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(2.17a) L hQhU = Qh LU + t

(2.17b) L*Qh =QL*U + T*

where

(2.17c) lIT fla, + II*1'.<Kw 2(U,h)

Proof: The identity (2.16) follows from an elementary summation by parts.

The estimate (2.17c) follows from Taylor's theorem. Of course, if U C4Q

then the truncation error JEl + JE*1 is of orderh2

Lemma 2.3: Let F be a grid vector and let

JFjj,, = max (IF.j I; 1 < i j < P}

There are constants K > 0 h h0 > 0 such that, if

0 <h < h0

and U is the solution of

(2.18a) L hU = F in 02(h)

(2.18b) U = 0 on aM(h),

then

Proof: This well-known result follows from the discrete maximum principle

and lemma 2.2. See [11].

_________________________
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Lemma 2.4: Let U be a grid vector which vanishes on Q(h). Then

(2.20) -(AhU,U) < I(U,LhU) + 11all 1llU1Ih • llVxUtlh

+ jfbff llU1lh " IIVYUIlh

Proof: Direct Computation.

Before discussing the operators Nh we discuss the "prolongation"

of grid vectors U into functions U(x,y;h) defined on Q2

Let the mesh region ?(h) be "triangulated". To be specific, imagine

that the diagonal lines

y = x - jh , j = -(P+l), - P,... ,P,(P+I)

have been drawn over the grid. Each square with vertices (xi,yj),

(x ,y), (xi,Yj+) is considered as the union of two

triangles.

(xi Yj+l 1 - (Xi+l'Yj+l)

(xi Yj ) )(xi+ l Y )

With each grid vector U = {Ui . we associate a piecewise linear

function U(x,y;h) which is linear on each triangle and

U(xi,yjh) = Ui
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Let P(h) be the space of all such function and Po(h) be the sub-

space of P(h) which consists of those functions which vanish on M

Throughout the remainder of this work we will make a complete identi-

fication between grid vectors U = ( } and these associated functions

U(x,y;h). This will avoid cumbersome notational difficulties.

Let ( , ) be the L2( ) inner product, i.e. if f,g L 2(Q)

then

(2.21) (fg) = f f (x,y)g(x,y)dxdy

Lemma 2.5: Let U,V 6 P0 (h) . Then

(UiV) N (UV) +

(2.22) 3h2.EO i (V+V

24 ii i+l,j i-l,j vi,j+l+Vij-1

*1 , j
+h 2  -
+ - i~j U ij(V i+llj-l+V i-l,j+l) •

Furthermore

(2.23a) (U,V) = (U,V) + E1

where

(2.23b) JEI < h(U,U) (-h VV)

Proof: The formula (2.22) is obtained by a direct integration. The

estimates (2.23a) and (2.23b) follow from (2.22) and lemma 2.1.



Lemmiia 2.6: Let U EP(h) .Let S h be the triangle with vertices I,J,K.

Then

(2.24) U(x,y;h)dxdy -~~U+U +UK

Sh

In this notation I,J and K are symbols for pairs of indices (iji).

Proof: Direct integration.

We now turn to a discussion of the operator N h We do not describe

these operators as specifically as we described Lh and L* . Instead,

we make the following weak consistency assumption.

0

Assumption N: Let N h be defined by: for I < f,j < P

0~Ui = a(x~ ~~ [i+l'j -Ui~i 3 -I , jl-Ui

We assume that, for all grid vectors U,V which vanish on 3Q2(h)

0

(2.25a) (U,NhV) =(U,NhV) +

where

(2. 25b) JE 21 <Dh[-A hU'U).(-tAhVV)lh

+Dh 2 [(-A h UU) +(-A h VIM

Lenmma 2.7: Let U E P 0(h) . Then there is a constant C1  depending on

(ictH ~ (~f~, but not on h so that
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0 0
(2. 26a) (N hU,N hU) C 1 (-.h Ulu)

Proof: Direct Computation.

Before proceeding to the convergence theorem of the next section, we

recall some basic facts. U

If U E P (h) then

(2.27) (-A ~Ulu) Hul 2II

Moreover, we have the important

Lemmra 2.8 (Rellich): Let h -* 0 and let U EP (h )satisfy
n n 0On

(-Ah UU n n = 2uil <K.

Then there is a subsequence n' and a function u E H()such that

0
U n' ~~u in H1(P2)

UnI ~u in L 2(92)

Proof: See [2].
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3. THE CONVERGENCE THEOREMS

Lemmna 3.1: Let c be a compact subset of the resolvent set of T

Assume that

For each z E consider the problem

(3.1a) LhU -INhU =F, in &2(h),

(3.1b) U = 0 on aSI(h)

There are constants h1 > 0 , > 0 with Kindependent of h ,such

that: For 0 < h < hl, problem 3.1 has a unique solution

U , and

(.)IIUIIh < KIIFI11h

2Moreover, for every u E C ()which vanishes on 4?, let V be the

grid vector which satisfies

(3.3a) LhV - I NhV = Qh[Lu - 1Nu] ,in SINh

(3.3b) V = 0 , on 311(h)

Then

(V-u,V-u) -,O as h - 0

That is, V(x,y;h) converges to u inL

2(__
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Proof: It is only necessary to verify (3.2). Suppose (3.2) is false.

Then there are sequences Zn E h hn -0. 0 and grid vectors F nsuch

that

(3.4a) JIF n11h - as h n-~ 0
n

while the corresponding solutions C(3.la), (3.1b], V n, satisfy

(3.4b) I1Vn1hh 1
n

Then

(3.5a) Lh V -- N V f , in S(h)
hn Zn h n n n

(3.5b) Vn 0, on a~

(3.5c) I1Vn 11h 1
n

Applying lemmna 2.4 we have

(3.6) h V n IV n) < INVIf ) I + IjaIjo 1t'xVnIlh + IjbII,,, I1V yVnI11h

Using Assumption N and Lemma 2.7 we have

I(Vn IN h V nI < C l(-Ahn n vv) + 2Dh n(-A h Vn IVn)

Therefore

(3.7) -(ah VnIV n)< Ifn1 + K2 + (+ Oh (hnV)
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where

22 -

C
C ma x Z z

=max T 2D z -s

Thus, when

we obtain

(3.8) (- V IV) < 2(l +K(2
n

Let z be a subsequence of the z such that

n n.

Applying Lemmna 2.8 we see that there is a sub-subsequence n" and a func-
0

tion v E H1  such that

(M v v in H1(I

and

(11) V nil v in L 2(

For simplicity of notation we denote {h~} by (h~

Let o C~(1 and let

(3.9) On Qhn0O
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From (3.5a), (3.5b) we obtain

(~L V N V f(
n h n n z n ni h n) n n~,

Thus, using Assumption N we see that

hnO V n Z !(on IN V n) (Ongn

where(L n'nnhnnb

f~lhh~-*0 as n -

On letting n lemma 2.2 and lemmna 2.5 yield

(3.10) (L*O,v) - (Nv) 0

Thus, v is a weak solution of

(3.11a) Lv -iNv - 0 , in S1

(3.11b) v =0 , on 3So

But, then, v is a genuine solution of (3.11a), (3.11b) and is

an elgenvalue of T (see [2]). With this contradiction we have proven

(3.2).

The remainder of the lemmna follows from similar arguments.

Let P 0 0 be an elgenvalue of T . Let

S --:ker (ij-T)0[

i.e., the kernel or nullspace of the linear map (pt-T)O' where a

is the ascent or rank of uj (see [5]). S is the range of the l inear
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projection E given by

(3.12) E z (z-T) 1ldz
2ri

with r any circle in the resolvent set of T enclosing u in its in-

terior, but no other point of the spectrum. The linear projector E can

also be written in the form

a

where {(P., i1l,2,....a} is any basis for S and f~t i=1,2 ... a} is the

corresponding dual basis in

(3.13b) S* ker (ij-T*VO'

That is E* S* and (0p .W 6. . Here T* is determined by

(3.13c) (Tu,v) (u,T*v)

That is,

-1(3.13d) T* 2 N*(L*)

Let r . Applying Lemmna 3.1 we see that

(3.14) (z-Th F1 1 (L 1 N 1N Lh

is well-defined on r for 0 < h < h1  Let

(3.15) Eh (z-Th)1dz

s.%.
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Lemmia 3.2: Let wi 0 0 be an eigenvalue of T .There is an h ' 0 such

that if 0 h 'h there is an eigenvalue 1hof Th which lies in the
2 P

interior of r

Proof: If the lenmma is false, then

E 0.

Let pE S be an eigenfunction of T with eigenvalue pi It is not dif-

ficult to prove that E C 2( F) However, in order to see how the general
0

argument goes, we replace 0 by a smooth H2 n H 1  approximant, which we

again call 0 Let

(3.16a) 0h=~ ~' '' Ehh

and let

(3.16b) T1 = Qh E

we observe that

Sh (x~y;h) -~Ep 0

We calculate

y 0 1 rdz 1L-!)- ~ - -L'N -1
h - h TT 2ii Jz [Qh(L-ih) L4h(hhh]

r

Since 0 is smooth we may apply lemmna 2.2. Thus

Lhch Qh LO +T
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where JIT 11.- 0 .In fact, for each fixed z e r let v(x,y;z) be the

solution of

(3.17a) (L-1N)v - L v 0 on 3Q2

while V is the solution of

(3.17b) (L -1N)v QL V 0o 3(hh z h V h Qhh n a2h

From Lemmia 3.1 we see that

1IV11h + (-AhV'V) <KJL1.

Thus, using Lemmna 2.5 and Hbilder's inequality we see that there is a constant

K1I such that

(3.18) HVIL() K1 , IiviL(~ K

Thus

(3.19) u(x~y;h) - V(x,y;h) -L JL (v xy - V(x,y;z))dz

Applying Lemmna 3.1 we see that

21t

1uV 2( i-f ede Ilv(,;z)-V(-,;z)I
LoS) 7 L 2(Q2)

However, according to Lemmna 3.1 the integrand goes to 0 for every z r

and the estimates (3.18) allow us to apply the dominated convergence theorem.

Thus

V(x;y;h) EO 0 0

. .~-- A
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Corollary: Let Sh denote the range of Eh. Then, for 0 < h < h2

we have

dim S > dim S =ah-

Proof: We need only apply the above argument to each i in the basis of

S , smoothed if necessary. The resulting grid vectors EhQh i will be

linearly independent if h is small enough.

Lemma 3.3: dim S = dim Sh.

Proof: Let Ph 0 and Vh be an eigen pair of Th That is,

LhVh = h Nh h

Suppose h "Then, it follows from Lemma 3.1 that - is an eigenvalue

of T

In fact, let Vh satisfy

h-h Vh Wh 0
T r = )r

(Uh-Th) Vh = 0

A modification of the argument of Lemma 3.1 shows that, after selection of

a subsequence if necessary, there are functions v,w e L2 (Q2) such that

Vh -.v , Wh  w 0

and

(P-T)r'lv = w $ 0

'0I___ (G-T -~. I.T~ -0
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Thus, a basis for Sh converges to a set of linearly independent func-

tions in S Therefore

Lim sup dim Sh < dim S = a

Thus, the lemma follows from the corollary to Lemma 3.2.

We collect our results in the following

Theorem 3.1: Let p 0 be an eigenvalue of T with algebraic multi-

plicity a . Let r be a circle about p which does not include any other

point of the spectrum of T either in its interior or on its boundary. Then

there is ah > 0 such that if 0 < h < h11

(i) there are no eigenvalues Ph of Th on r

(ii) there are eigenvalues l,h, W2,h,..r,h of Th which lie

inside r

(iii) Let m1 ,m2,... mr be the algebraic multiplicities of

2 r,h respectively.

Then
r

S m. : a.
s=l

Furthermore, the mapping

Jh = EhQhjs

is one to one and onto from S to Sh . Similarly, let

h

i h



22

Then is also one to one and onto from Sh to S

Once one has this result one can follow Kreiss [6], Osborn [7] or

de boor and Swartz [3] to obtain Theorem 3.2: Let

-a ()m jj,h •

Then there is a constant K such that

(j-ul < K sup (T-Th)IS

Specifically, we have

Let oi, i=1,2.... a be a basis for S and i =1,2...a be a basis

for S* Then there is a constant K such that

ai- < K I ((T-Th)0o¢

- : 
h

Proof: See the development in [3].

I

'?~ "~-*-
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4. THE GENERAL IDEA

While the discussion in section 3 is limited to the model problem

described in section 2, one can see the essential points and describe the

basic ideas which will enable one to discuss more general problems.

The basic tool is the relationship between the linear projectors E

given by (3.12) and Eh given by (3.15).

A look at the proof of Lemma 3.2 shows that one need only apply Eh

to "smooth" elements h " However, even when we apply Eh to a smooth

h' %we must have results such as those given in Lemma 3.1

Thus it is worthwhile to study the argument in Lemma 3.1. Almost any

discussion of the operator Lh yields estimates such as those given in

Lemma 2.2 (consistency) and Lemma 2.3 (convergence in the smooth case).

However, the use of E and Eh requires estimates on the solutions Vh

of the equations

ZLhV - NhV = fh' z E r.

We have essentially used estimates on LhI to obtain these estimates. The

basic facts are

FACT 1: If {Vh; O<h<h0 } is the set of all "functions" in P(h) such

that

ILhVhI1h C, 0 < h < h0

then the {Vh} are sequentially compact.
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FACT 2: If fh' Vh E P(h) and

0(4.1a) zLhVh - NhVh = fh

(4.1b) fh f E C

(4.1c) Vh - V

then, in an appropriate sense

(4.2) zLV - NV = f

In the proof of Lemma 3.1 we first use these facts to establish (3.2).

Then we use these facts and (3.2) to prove the convergence of the solutions

of (3.3a), (3.3b).

Thus, in the more general case, i.e. general L, N and 2 , one would

expect to prove analogous spectral convergence theorems if one can establish

these two facts. And, our discussion shows that this is the case. The proof

of these facts are, in general, not too difficult. We have chosen to use

"energy estimates" to establish FACT 1 and Weyl's lemma (weak solutions are

genuine solution) to establish FACT 2.

In any particular instance one has a variety of possible arguments which

lead to such conclusions. For example, in the case discussed in this report,

i.e. the model problem, one could use the estimates of A. Brandt [4] to es-

tablish FACT 1. In fact, in this case, one can use the Banach space C(SQ)

rather than L2(il) and rely completely on the estimates of [4]. We choose

to use "energy estimates" because we feel that they are (i) weaker and (ii)

(generally) easier to obtain.

4t
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